Biodiverzitet u krizi?

BIODIVERZITET. Zvuči komplikovano, zar ne? Kada kažemo biodiverzitet mislimo na nevjerovatnu raznovrsnost živog svijeta i faktore koji na tu raznovrsnost utiču.


Biodiverzitet predstavlja raznovrsnost ekosistema, vrsta, populacija, gena i genotipova. Iako se recentni biodiverzitet proučava na na tri novoa-genetičkom, specijskom i ekosistemskom, Svetska organizacija za konzervaciju (The World Conservation Union, IUCN) naglašava krucijalnu potrebu očuvanja genetičkog diverziteta i evolucionog potencijala bioloških entiteta.

Biološki diverzitet se veoma naglo i brzo redujuje pod direktnim ili indirektnim uticajem čoveka, njegovom delatnošću i konstantnim povećavanjem brojnosti ljudske populacije. U periodu od pojave anatomski savremenog čoveka pre oko 200 000 godina, do pre oko 10 000 godina., tj do početka razvoja poljoprivrede i stočarstva, smatra se da je planetu naseljavalo oko 10 milona ljudi. U periodu do pre oko 2000 godina populacija se povećala na 200 miliona, a 1836. godine je dostigla 1 milijardu. Danas, ljudska populacija broji više od 6 milijardi ljudi. Neminovno je da svi ljudi moraju negde živeti i hraniti se.

Tako je usled naseljavanja ljudi u nove sredine i uslovilo negativne promene u biosferi, od nestanka velikog broja bioloških vrsta, preko introdukcije vrsta u nova staništa, destrukcije staništa pa sve do konačne redukcije biodiverziteta. Smatra se da će, ako se sadašnji tempo destrukcije staništa i redukcije biodiverziteta nastavi, novi vek biti period šestog masovnog izumiranja prouzrokovanog aktivnošću jedne vrste, Homo sapiens. Utvrđeno je da je preko 50% recentnih vrsta kičmenjaka i 12,5%biljnih vrsta ugroženo.

Prema IUCN (1996) definisane su kategorije ugroženosti vrsta: izumrle, kritično ugrožene, ugrožene, ranjive, i vrste sa malim rizikom isčezavanja. Alarmantna situacija je najizraženija kod ostrvskih populacija životinja dok u okviri vaskularnih biljaka mnogo veći procenat čine golosemenice (32%) u odnosu na skrivenosemenice (9%). Primenom različitih metoda u proceni stope izumiranja vrsta je postignut konsenzus o pokazatelju rapidnog porasta stope, a to je porast od 1000 puta u odnosu na uobičajenu pozadinsku stopu izumiranja vrsta.

Izumiranje vrsta je jedan od najvažnijih fenomena za objašnjavanje radijacije oblika života tokom istorije Zemlje. Nestanak vrsta može biti uzrokovan delovanjem različitih faktora, ali je prvo neophodno napraviti razliku između tzv. pseudoizumiranja ili filetičke evolucije i izumiranja vrsta. Naime, filetička evolucija predstavlja niz kontinuiranih evolucionih promena u jednoj evolucionoj liniji koje tokom vremena dovode do nastanka novog biološkog entiteta i/ili podele linije ili vrste u dve ili više (specijacija).

Tokom Fanerozoika (period pre oko 543 mil. godina), vrste su isčezavale određenom kontinuiranom stopom, i masovno, naglo u pojedinim periodima. Međutim, danas smo samo nemi posmatrači šestog masovnog izumiranja! Bespovratno smo izgubili ogroman broj bioloških vrsta, a nismo dobili ni jednu novu. Znamo uzrok, vidimo posledice. Šta nam je činiti?

Procena nivoa genetičke varijabilnosti

Genetička raznovrsnost predstavlja sirov materijal za adaptivnu evolutivnu promenu pa je njen gubitak često praćen smanjenjem prosečne adaptivne vrednosti populacije. Zbog toga je najveći broj populaciono-genetičkih istraživanja usmeren ka proceni njenog obima, koristeći različite nivoe detekcije.

Najpre su kao pokazatelj genetičkog diverziteta korišćene očigledne razlike u morfološkim osobinama. Izučavanje kvantitativnih karakteristika, poput komponentni adaptivne vrednosti, zapravo daje informacije o najvažnijem aspektu genetičke raznovrsnosti. Najčešće se koriste složene statističke analize za razdvajanje genetičke od sredinske varijanse, tj. za određivanje udela naslednih genetičkih razlika između jedinki u ukupnoj vidljivoj (fenotipskoj) različitosti.

Razvojem citoloških tehnika omogućeno je neposredno izučavanje hromozoma, čime se stekao uvid u suptilniji organizacioni nivo genetičkog materijala. Posmatranjem obojenih preparata metafaznih ili interfaznih hromozoma, ustanovaljava se broj, oblik hromozoma i raspored traka karakterističan za vrstu. Postojanje numeričkih ili strukturnih hromozomskih razlika između npr. jedinki ili populacija daje podatke o posebnom obliku genetičke raznovrsnosti – hromozomskom polimorfizmu.

Sledeći pomak ka registrovanju još finijih genetičkih razlika napravljen je uvođenjem biohemijsko-genetičkih metoda. Počev od šezdesetih godina prošlog veka, tokom naredne dve decenije, korišćenjem proteinske elektroforeze skupljeni su podaci o nivou varijabilnosti strukturnih gena za preko 1000 vrsta .Utvrđeno je da genetička raznovrsnost opada u sledećem nizu: beskičmenjaci > biljke > kičmenjaci, gde su među kičmenjacima najniže vrednosti za populacije sisara.

Tokom poslednje dve decenije molekularno-genetičke metode omogućavaju neposrednu procenu raznovrsnosti nukleotidne sekvence. Polimorfizmi restrikcionih (RFLP) ili slučajno amplifikovanih fragmenata (RAPD), mikro- (STR) i minisateliti (VNTR), polimorfizam pojedinačnih nukleotida (SNP) i sekvenciranje DNK pokazuju da postoji velika unutarpopulacijska varijabilnost. Ono što se često gubi iz vida pri interpretiranju ovih rezultata jeste funkcionalni značaj ovakvog polimorfizma. On je zapravo vrlo mali, s obzirom da je većina ispitivanih sekvenci nekodirajuća DNK.

Brojne tehnike i mnoštvo sakupljenih informacija omogućavaju nove sintetske interpretacije složenijih problema. Tako na primer, novi molekularni i morfološki podaci u kombinaciji sa tradicionalnim citološkim pristupom pomažu u identifikovanju adaptivne uloge polimorfizama.

Genetička varijabilost i konzervaciona genetika

Genetička varijabilnost predstavlja evolutivni potencijal te je njegovo proučavanje i kvantifikovanje fundament u istraživanju evolucionih fenomena i ključna je tačka u konzervacionoj biologiji. Tako je genetička varijabilnost neophodna u prilagođavanju populacija stalnim promenama u spoljašnjoj sredini. Od sredinskih promena, sa konzervacionog aspekta, su najvažnije one koje su rezultat globalnog zagrevanja, zagađenja, introdukcije novih kompetitora, vektora izazivača raznih bolesti, novih parazita i štetočina.

Da bi populacija bila u mogućnosti da se suoči sa novim selekcionim pritiscima u promenljivoj sredini, ona mora imati određeni nivo genetičke varijabilnosti kao meru evolutivnog potencijala. Znači, samo populacija koja poseduje genetičku varijabilnost može da adekvatno i relativno brzo odgovori na promene u spoljašnjoj sredini. Dok populacija u kojoj odsustvuje genetička varijabilnost, nema potencijal za adaptivnu evoluciju i zbog toga joj preti rizik od nestajanja ili izumiranja.

Parametri koji se najčešće koriste za procenu nivoa genetičke varijabilnosti su polimorfizam(P), prosečna heterozigotnost (H) i alelski diverzitet(A). Genetička varijabilnost je kvantifikovana analizom raznovrsnih karaktera, uključujući vaijabilnost kvantitativnih karaktera, proteina, jedarnih DNK lokusa, mitohondrijalne DNK (mtDNK), hloroplaste DNK (cpDNK) i hromozoma.

Konkretnije konzervaciona genetika se bavi genetičkim faktorima koji utiču na ugrožavanje opstanka pojedinih vrsta i na taj način pokušava da odredi i moguće načine zaštite brojnih biljnih i životinjskih vrsta.

Osnovna pitanja kojima se bavi konzervaciona genetika su:

  1. Štetni efekti inbreedinga (ukrštanja u srodstvu) na preživljavanje i reprodukciju (inbriding depresija);
  2. Štetni efekti na fitnes usled outbreedinga-slučajnog ukrštanja (autbriding depresija)
  3. Gubljenje genetičke varijabilnosti i (ne)sposobnost prilagođavanja promenama u sredini;
  4. Fragmentacija staništa i nemogućnost protoka gena;
  5. Slučajni procesi (geneticki drift);
  6. Akumulacija štetnih mutacija;
  7. Genetička adaptacija i problem reintrodukcije;
  8. Rešavanje taksonomskih nejasnoća;
  9. Definisanje reprezentativne ili tzv. menadžment jedinice vrste;
  10. Korišćenje molekularno-genetičkih analiza u forenzici kao i za razumevanje bioloških aspekata vrste koji su bitni za konzervaciju.

Konzervaciona genetika ima specifičnu i kombinovanu metodologiju pre svega zbog kompleksnosti problema kojima se bavi. Veoma inetenzivno se koriste i izuzetno precizne kompjuterske simulacije eksperimenata. Konkretno, koristi se tzv. analiza varijabilnosti populacije (population viability analysis-PVA) koja precizno procenjuje stepen rizika po opstanak neke populacije, usled kombinovanog dejstva demografskih faktora, promena u spoljašnjoj sredini, variranje veličine populacije, katastrofičnih događaja u kontekstu genetičke strukture populacije.

Da, mi živimo u eri dramatične ugroženosti biodiverziteta. Ipak, mislim da teorija, eksperimentalni podaci i modelovanje mogu da daju jasniji uvid u kompleksnost problema, pa mogu omogućiti i formiranje konervacione strategije u zaštiti brojnih biljnih i životinjskih populacija i vrsta.

Piše: Zorana Kurbalija Novičić

Izvor B92

Još

PHOTO:Koji su psi najpametniji?

Znate li koji su psi najinteligentniji? Svi volimo svoje pse i … [Opširnije...]

Razgovor

"Dakle, ti bi zelio da razgovaras sa mnom?" rece Bog. "Ako imas … [Opširnije...]

Svijeće sa parafinom opasne za zdravlje

Kada se upale svijeće pravljene od parafina, dolazi do isparavanja … [Opširnije...]

Gluva žena

Čovjek se zabrinuo shvativši da mu žena više ne čuje onako dobro kao … [Opširnije...]

Važnost vitamina K

Vitamin K topi se u masnoćama, djelimično se topi u alkoholu, dok je u … [Opširnije...]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Portal mozete pratiti na adresama: durmitor.com, durmitor.net, durmitorcg.com, destination-durmitor.org, odjek.com...Za bilo koji oblik saradnje(turistička promocija, razmjena linkova...) pišite na naš e-mail
E-mail